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A model of pitch perception, called the spatial pitch network or SPINET model, is developed and 
analyzed. The model neurally instantlares ideas from the spectral pitch modeling literature and joins 
them to basic neural network signal processing designs to simul/(te a broader range of perceptual 
pitch data than previous spectral models. The components 0f the model are interpreted as peripheral 
mechanical and neural processing stages, which are ca?able of 'being incorporated into a larger 
network architecture for separating multiple sound sources in the environment. The core of the new 
model transforms a •spectral representation of an acoustic source into a spatial distribution of pitch 
strengths. The SPINET model uses a weighted "harmoni6' sieve" whereby the strength of activation 
of a given pitch depends upon a weighted sum of narrow regions around the harmonics of the 
nominal pitch value, and higher harmonics contribute less to a pitch than lower ones. Suitably 
chosen harmonic weighting functions enable computer simulations of pitch perception data 
involving mistuned 'components, shifted harmonics, and Various types of continuous spectra 
including rippled noise. It is shown how the weighting functions produce the dominance region, 
how they lead to octave shifts of pitch in response to ambiguous stimuli, and how they lead to a 
pitch region in response to the octave-spaced Shepard tone complexes and Deutsch tritones without 
the use of attentional mechanisms to limit pitch choices. An on-center off-surround network in the 
model helps to produce noise suppression, partial masking, and edge pitch. Finally, it is shown how 
peripheral filtering and short-term energy measurements produce a model pitch estimate that is 
sensitive to certain component phase relatiofi•hips. ¸ 1995 Acoustical Society of America. 

PACS numbers: 43.66.Hg, 43.66.Ba 

INTRODUCTION AND OVERVIEW 

A fundamental problem •f auditory perception is the 
identification and separation of multiple acoustic sources. 
Such a process enables human listeners to perceive and rec- 
ognize the contents of discriminable auditory streams, in a 
process called auditory scene analysis by Bregman (1990). 
The process utilizes a variety of cues including synchrony, 
harmonicity, and binaural timing and intensity information to 
assign acoustic components to the appropriate auditory 
stream. This paper describes a model for generating a spatial 
representation for the pitch of an acoustic source that can be 
naturally embedded in an architecture for source separation. 

The spatial pitch net, or SPINET, is a type of spectral 
"pattern matching" model, briefly reported in Cohen et al. 
(1992a, b). The input to the pitch detecting module is a spec- 
tral representation, and the output is a function across pitch. 
Other models that transform a spectral representation of the 
signal to a pitch representation include the pitch models of 
Goldstein (1973), Wightman (1973), and Terhardt (1972). 
The SPINET model properties simulate many significant 
pitch perception data for reasons similar to those of the spec- 
tral models mentioned above, whose formal kinship has been 
demonstrated by de Boer (1976) (see the Appendix for a 
summary of data addressed by different models). Despite the 
formal similarities, each of the spectral models suggest a 
different mech•inism for implementing what turns out to be 
similar functions of pitch. Wightman (1973) computes the 
peak in a cosine Fourier transform of a smeared spectrum. 
The process analogous to smearing the spectrum is accom- 

plished in the Goldstein (1973) model by perturbing the sig- 
nal frequency components with noise. A harmonic template 
matching process then produces the most likely pitch. In the 
Terhardt (1972) model, input components have "virtual 
pitches" at subharmonics. When different components have 
virtual pitches that coincide, the strength of the virtual pitch 
is increased. This process is similar to increasing the pitch 
strength when multiple harmonic components fall through 
holes in the sieve of a harmonic template. 

A key component in each model is a set of filters with 
bandwidths that scale with the filter center frequency and 
which spread or randomize the ultimate effect of a compo- 
nent across frequency. One difference between Goldstein's 
optimal processor model and the other models is that the 
Goldstein model is not deterministic. The frequency scaling 
function is the variance of a normally distributed noise pro- 
cess given the input frequency. The model then produces a 
maximum-likelihood estimation of the pitch using an ideal- 
ized harmonic template. Wightman's bandwidth-scaling fil- 
ters model the peripheral auditory filters, and are intended to 
approximate the resolving powers of the basilar membrane 
place coding. A cosine Fourier transform measures the peri- 
odicity in the spectral representation to produce a determin- 
istic pitch function. The spreading function in Terhardt's 
model is the "coincidence interval" parameter which deter- 
mines the contributions to a pitch made by nearby subhar- 
monics of different input components (Terhardt et al., 
1982a). To sum up the functional relationships between the 
maximum-likelihood estimator and the deterministic pitch 
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FIG. !. Graphical representation of the the SPINET model processing 
stages. (See Sec. I for equalions.) 

strength models, the smearing of the effect of spectral com- 
ponents (whether by a noise process or by the spread of 
activation) determines a pitch function (whether a probability 
density or an activation level) with various modes that (ex- 
plicitly or implicitly) are the result of different harmonic 
number assignments to the peaks in the spectral representa- 
tion. These components will discussed in more detail in the 
context of the spatial pitch network. 

I. SPINET STRUCTURE 

The stages of the SPINET model are summarized in Fig. 
1. The input to the model is computer generated sound 
sampled at a rate of 16 kHz. All sounds were 25 ms in 
duration including a 5-ms raised cosine onset and offset 
ramp. 

A. Model equations 

The pressure variation at the oval window of the cochlea 
initiates a traveling wave along the basilar membrane (yon 
B6k•sy, 1928) and produces a maximal displacement at a 
position along the basilar membrane as a function of fre- 
quency. High frequencies produce their maximum displace- 

merit near the basal end of the cochlea, low frequencies near 
the apex. Each point along the membrane can thus be con- 
sidered as a bandpass mechanical frequency filter. 

The processing stage !nodeling the mechanical filtering 
of the basilar membrane (Fig. 1, stage 2) consists of a bank 
of bandpass filters, each with a frequency response approxi- 
mating a fourth-order Gammatone filter (Holdsworth et aL, 
1988; Patterson et al., 1988), 

GT(f )=[1 +j(f-fi)tb(fi)] 4. (1) 

and implemented as a cascade of four first-order digital fil- 
ters where f• is the center frequency of the ith filter, and 
bor 0 controls the bandwidth of the filter as a function of 
center frequency as described in Eq. (3). The complete set 
consists of 512 filters with center frequencies spaced evenly 
in equivalent rectangular bandwidth (ERB) units (Moore and 
Ginsberg, 1983) from 50 Hz to 5 kHz to cover the extent of 
the "existence region" for residue pitch (Ritsma, 1962). 

Following Moore and Glasberg (1983), the ERB of the 
filter centered at a f!'eque:tcy f is a function of the filter 
center frequency: 

ERB(f•)=6.2310-tf,•+93.3910-3f•+28.52. (2) 

Holdsworth et al. (1988) showed that if the power passed 
through the fourth-order Gsmmatone filter is set equal to that 
passed by a rectangular filter with gain one, then the band- 
width parameter b(,f•) is related to the ERB by 

b(f0 = ERB(f•)/0.982. (3) 

Equation (2) implies that such filters above I kHz have band- 
widths that are approximately a constant percentage of their 
center frequency, and become relatively wider as the center 
frequency becomes lower. 

The output of the filter bank is measured to derive a 
spectral representation of the signal using the equation 

BB(fi) ( 1 - e-•)[/2 
¾or• ,n) = N 

X x2(fi,n-A(i+j))e -fly 

(4) 

where x(fl ,n) is the signal passing through the Gammatone 
filter with center frequency fi at time n, fi=8.637X10 3, A 
is the sampling period fixed throughout at 1/16 000 s, and 
N=80=5 ms/A is the averaging window length. Input sound 
levels were chosen sc that maxiY(fi ,n) is the same for all 
sounds. By Eq. (4), YOr• ,n) is a measure of the square root 
of the power passed through the filter centered at that fre- 
quency multiplied by an exponential time window which de- 
cays to half its maximum over approximately 5 ms. This 
measure is averaged over a 5-ms window in each filter to 
yield the spectral input (Fig. 1, stage 3) to the next process- 
ing layer. The function BE, Or/) is a lumped model of pro- 
cesses contributing to a broad bandpass effect on the contri- 
bution of frequency regions to pitch which is assumed to 
include the outer and middle ear transfer function (Dadson 
and King, 1952) as well as the phase locking capabilities of 
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eighth nerve neurons. Unlumping these properties would add 
to the complexity of the model without having a substantial 
effect on the simulated results. This stage (Fig. 1, stage 4) is 
thus modeled in the frequency domain by the gamma func- 
tion: 

BB(fi) = sfi exp( - sfi ), (5) 

where s =0.001 producing a peak gain at 1 kHz and a region 
between 500 Hz and 2 kHz that is flat within a 3-dB range. 

The next stage (Fig. 1, stage 5) models cooperative in- 
teractions across nearby frequencies and competitive interac- 
tions across a broader frequency band of the averaged power 
spectrum Y(fi,n). Interactions fall off with distance as the 
Gammatone function of Eq. (1). The inhibitory region is 
larger than the width of the excitatory region, and both scale 
with the ERB of the channel. The power spectrum of the 
Gammatone function with center frequency fi and a band- 
width proportionality factor of g is 

I H(fi ,f, K)I 2= [ 1 + ((f-f i)/( Kb (fi))2] -4, (6) 

where b(f i) is as defined in Eq. (3). The result of the 
cooperative-competitive interactions is 

S(fi ,n)= • Y(fi ,n) 
j = 1 [ A ex(fi) 

- Ai,(fi) ]' (7) 
where fi is the center frequency of the channel, and ge•=0.4 
and Kin----0.6 define the excitatory and inhibitory regions as a 
constant proportion of the ERB of the frequency channel. 
The area of the excitatory region [Aex(fi) ] and that of the 
inhibitory region [min(fi) ] are defined to be the sum of the 
Eq. (6) function values taken over the center frequencies of 
the filter bank. Although each inhibitory region is wider than 
that of the excitatory region centered at the same frequency, 
the two regions are normalized in Eq. (7) to be equal. Thus, 
if the power spectrum measured from the peripheral filter 
bank is flat, then the output from this layer is zero across the 
frequency spectrum. Equation (7) models the equilibrium re- 
sponse of neurons organized in an on-center off-surround 
anatomy. It is assumed that the neurons track the inputs fast 
enough to remain in approximate equilibrium with them. 

The next two stages carry out a weighted (Fig. 1, stage 
6) harmonic summation (Fig. 1, stage 7). The pitch strength 
P is a sum of non-negative spectral strengths S, weighted by 
the distance between the nominal pitch p and the frequency 
of the harmonic mp, as in 

P(p,n) = • [S(mp,n)]+h(m), (8) 
m 

where 

x, for x>0, Ix] += 0, otherwise 
and 

/ 1 -M 1og2(m), 
h(m)=[ O, otherwise. 

for M log2(m)<l, 
(9) 

Parameter M in Eq. (9) determines the slope of the falloff 
with harmonic number m that a harmonic makes to the 

strength P of pitch p, and has the value M=0.15 in our 
simulations. 

The output of the network is taken to be the pitch that 
has the strongest activation level; that is, the "best-fitting 
fundamental" is taken to be that pitch p which maximizes 
the output function P(p,n). When modeling experiments 
where the pitch responses were restricted to a given region, 
the pitch is taken to be the maximal pitch in that region. A 
winner-take-all operation, which can be implemented by an 
on-center off-surround feedback network (Grossberg, 1973, 
1988) or another contrast enhancing competitive neural net- 
work, can be used to select the maximally activated pitch. 
The combination of filter (8) followed by a contrast enhanc- 
ing operation is a specialized case of a competitive learning, 
or self-organizing feature map, neural network (Carpenter 
and Grossberg, 1991; Grossberg, 1976, 1982; Kohonen, 
1989), again solved at equilibrium with respect to the current 
inputs. Some further assumptions will also be suggested be- 
low as a way to interpret the information across the entire 
pitch function. 

B. Implementation 

The computations were performed by three separate pro- 
grams, one for the Gammatone filter bank, another for the 
energy, and the last for the pitch computation including the 
on-center off-surround convolution. All programs were writ- 
ten in C and run on a time-shared Sun Sparc-10 workstation. 
For 25-ms sounds sampled at 16 kHz, 512 frequency chan- 
nels, and 200 pitch channels, the computation times were 
filterbank: 5.5 s, energy: 1.2 s, and pitch: 0.7 s, each includ- 
ing input/output file read/write time. The model uses only 
local feedforward network interactions that will run in real 

time when implemented as a chip. 

II. MODEL COMPONENTS AND OTHER MODELS 

A. Peripheral filters 

A comparison of the peripheral frequency spreading 
functions followed by the template match in both the 
SPINET and the optimal processor models clarifies the dif- 
ferences between a mechanistic and an information theoretic 

theory. The interpretation of the peripheral frequency spread- 
ing effect represents uncertainty about the precise frequency 
of a stimulus component in the optimum processor theory, 
and a deterministic spatial weighting function in the network 
model. In the SPINET model, the peripheral spreading func- 
tions is part of a pitch matching template. In the statistical 
model, the Gaussians do not function as part of the template, 
but instead represent the uncertainty of the frequency of an 
input component. The template is matched to the perturbed 
signal wherein the contribution of a tone to a pitch falls off 
with the Euclidean distance between the noise perturbed tone 
and nearest template component location. The optimum pro- 
cessor produces a pitch with the maximum likelihood given 
the uncertainty of the input, or more generally, produces a 
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FIG. 2. (a) The excitation pattern created by a complex of six harmonics of 100 Hz from 1000 to 1500 Hz. (b) Tl•e spectral representation from which pitch 
will be derived which results from the on-center/off-surround processing of the excitation panere. 

probability density function across pitch. The SPINET model 
produces a continuous, spatially organized, "strength of ac- 
tivation" function of pitch. 

The optimal processor and the SPINET model predict a 
similar multimodal distribution of possible pitch matches. In 
both models, the different modes correspond to different es- 
timates of the harmonic numbers assigned to the compo- 
nents. In order to compare the deterministic models to statis- 
tical models or statistical performance data, the activation 
versus pitch function must be related to a probability density 
function of a random decision variable. Houtsma (1979) used 
one such technique to compare the models of Terhardt (1974) 
and of Wightman (1973) with Goldstein's model. He used 
the relative heights of the main modes in a region of the 
deterministic pitch activation functions as their relative like- 
lihoods, with nonpeak regions considered to have zero like- 
lihood. The pitch function was then normalized so that the 
sum of the heights was one, to yield something analogous to 
a discrete probability density function. 

Many models of pitch use a broad bandpass function 
near the periphery that has been variously interpreted as rep- 
resenting the spectral-dominance phenomenon (Terhardt 
et aL, 1982a), or as representing the transfer function of the 
outer and middle ear together (Meddis and Hewitt, 1991), or 
the inverse of the minimum audible pressure (MAP• thresh- 
old function (e.g., Yost and Hill, 1979). The shape of this 
weighting function bears an inverse relationship to the tone 
frequency jnd function, which is used as partial justification 
for the shape of the function relating the variance of the 
noise distribution to frequency in Goldstein's pitch model. 
Despite the different mechanisms suggested, the shape of the 
function plays a similar role and is used to address the same 
data, particularly dominance region data, by the different 
models. 

B. On-center off-surround interactions 

Yost and Hill (1979) introduced the use of lateral inhi- 
bition into the pitch modeling literature in their peripheral 

weighting model. They were primarily concerned with mod- 
eling the pitch of anharmonic rippled noise which is pro- 
duced by subtracting Gaussian white noise from itself de- 
layed by an interval r. The spectrum has peaks spaced by 
lit, which in a log frequency representation become closer 
together at higher frequencies. 

They showed that a "dominance region" emphasizing 
the spectrum in the neighborhood of 41r produced the best 
pitch predictions for the this kind of noise. They used the 
center-surround meclr artism with bandwidths proportional to 
their center frequencies as a means of inhibiting frequencies 
above 41r without the model having to know a priori the 
value of r. In terms of the center frequency f of the filters, 
the lateral interactions used to fit the pitch data were about 
l/6f IBr the excitatory region, and an inhibitory region ex- 
tending another ll6f beyond the excitatory region. The sizes 
of the center-surround inte :actions agree with those found in 
physiological studies of the cat cochlear nucleus (Bilsen 
et aL, 1975) and psychoacoustically in humans (Houtgast, 
1977; Shannon, 1976). 

The on-center off-surround lateral interactions [Eq. (7)] 
play several important rolas in the SPINET model, one of 
which is to attenuate the dc level of activation in the spectral 
layer. Consider pink noise with constant power per octave. 
Since the excitatory and inhibitory regions are of equal area, 
the spectral representation •sed to derive pitch has a constant 
zero level of activation. A pitch model that sums spectral 
regions near harmonics that does not control for noise in 
some analogous fashion would be biased toward lower fun- 
damentals, since their harmonics become more closely 
spaced in the regions of high noise density. The effect of 
incorporating surround inhibition is to flatten the pitch re- 
sponse to noise. 

The center-surround mechanism also serves to increase 

the eflbctive resolution of the spectral representation, making 
pattern matching pitch delerminations possible where they 
would not otherwise be. The excitation pattern (the output 
from stage 4, Fig. 1) for six harmonics of 100 Hz between 
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1000 and 1500 Hz is shown in Fig. 2(a). The output of the 
center-surround processing is shown in Fig. 2(b), where all 
but the component at 1400 Hz are represented by a distinct 
peak in the representation. 

Also visible in Fig. 2(b) is the increased weight afforded 
the extreme frequency components of this stimulus relative 
to the middle components. This a "partial masking" effect 
which is explicitly incorporated by another mechanism in the 
model of Terhardt et al. (1982a). The dominance of outer 
components in frequency discrimination for both individual 
components and the pitch of the complex when low harmon- 
ics are missing has also been suggested by Moore et al. 
(1984). This edge enhancement of the spectral contour is also 
responsible in the model for the "edge pitch" associated with 
the filter cutoff frequencies of narrow bandpass noise 
(Bilsen, 1977; Fastl, 1971). 

C. Harmonic summation 

The harmonic sieve (Duifhuis et al., 1982; Scheffers, 
1983) is a kind of template matching where the "holes" in 
the sieve have a rectangular shape around each harmonic of a 
pitch. That is, an input component either contributes to the 
pitch or it does not, depending upon whether or not it is close 
enough to a harmonic of the pitch to fall through the sieve. 
Moore et al. (1985) measured the influence of a harmonic on 
pitch by mistuning the components one at a time, and ob- 
serving the effect on the shift in the pitch of the complex. As 
a single component in a harmonic complex is mistuned, the 
perceived pitch of the complex begins to shift at first in the 
same direction as the component. As the component is mis- 
tuned beyond 3% of its original frequency, its effect on the 
pitch begins to diminish and the pitch shifts back toward its 
original f0 (Fig. 3). When the component is mistuned by 
roughly 8% of its original frequency, its effect on the pitch is 
negligible. Moore et al. (1985) suggested that if a harmonic 
sieve is operating, one possible explanation of these data is 
that a component does not fall through the sieve in an all-or- 
none fashion. In the SPINET model, the frequency spreading 
due to the energy measure of the Gammatone filters [Eq. (1)] 
followed by the punctate template [Eq. (8)] is equivalent to 
using spectral peaks and a sieve with gradual skirts around 
the harmonics and is responsible for the gradual effect on the 
pitch as a harmonic is shifted. 

A problem arises in models that give equal weight to all 
harmonics of a fundamental because they predict equal pitch 
strengths (or likelihoods) for all subharmonics of that funda- 
mental. Additional mechanisms are needed to explain how 
even the pitch of a single tone is unambiguously perceived. 
This problem occurs in the optimum processor theory where 
the mean squared error used to evaluate the fit between a 
harmonic template and a stimulus gives the same result for a 
nominal pitch value and all its submultiples because the 
components of a template with a given spacing are a subset 
of the components of all templates with submultiple spac- 
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FIG. 4. Response of the network model to a tone at I kHz (a) with the harmonic weighting function h(n)= 1, (b) with the weighting function decreasing at 
the rate of 0.15/oct. 
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ings. The SPINET model without the harmonic weighting 
function [so that h(n)=l in Eq. (8)] exhibits sttch a re- 
sponse. This can be seen in Fig. 4(a), which show:s. the pitch 
activation due to a single input tone at 1 kHz with peaks 
equally prominent at all subharmonics. In Goldstein et al. 
(1978), two mechanisms are considered which would help 
prevent the subharmonic match. One is to restrict the number 
of harmonics that could contribute to pitch so that lower 
pitches would not be predicted by high components. The 
other is to restrict the range of pitches included in the tem- 
plate matching process. 

Gerson and Goldstein (1978) elaborated thiis second 
method by introducing an a priori expectation into the opti- 
mum processor theory. This prior expectation, due to experi- 
mental conditions and subject biases, is presumed to corre- 
spond to a rectangular distribution determining the •apper and 
lower bounds of pitch perception. Given this rec•Iz, ngular a 
priori expectation, the model computes a maximum- 
likelihood estimate evaluated over the region within the 
bounds of the expectation. 

In the SPINET model, as in Terhardt et al. (1982a), it is 
assumed that the greater the ratio of a component frequency 
to a nominal pitch value, the less the contribution the com- 
ponent makes to that pitch. The SPINET model uses a de- 
creasing function, linear in log frequency. To the extent that 
frequency is represented neurally as a tonotopic map, this 
model property represents a decreasing effect of cells on 
each other with distance across the map. 

In response to a harmonic complex or single tone stimu- 
lus, the weighted network model produces a unique maxi- 
mum in the pitch activation function at the pitch correspond- 
ing to the periodicity of the stimulus. Figure 4(b) shows the 
output of the model using the decreasing weighting func- 
tions, in response to a single tone at 1000 Hz. No additional 
attentional mechanism is required for the model to respond 
unambiguously with the pitch at the frequency of a single 
tone or harmonic complex. For single tones, this mechanism 
is consistent with the the fact that the range of possible pitch 
percepts is a priori much wider than a single octave. This is 
not to deny that frequency-specific attentional effects are 
sometimes operative, for example, in detecting signals in 
noise (Dai et al., 1991), •r in hearing pitches that correspond 
to the minor modes of the activation function, but in the 
absence of such active.attentional focusing, the default "ex- 
pectation" is assumed to be essentially unbiased. 

D. The dominance region 

The dominance region is that part of the spectrum where 
components have the strongest influence on pitch. It is a 
function of both the frequency of the input components and 
fundamental frequency (Plomp, 1967; Ritsma, 1i967). In 
terms of the optimum processor theory, the dominance re- 
gion is the spectral region where two complexes differing 
slightly in fundamental frequency are most discriminable 
(Goldstein, 1973). 

There are two different kinds of errors predicted by the 
shape of the o-If function (Fig. 5) in the model contributing 
to its account of the dominance region. One kind of error is 
due to pitches in the secondary modes of the probability 
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FIG. 5. Standard deviations for three different subjects (expressed as a/f } 
for the noise distribution functions as a function of frequency required to 
model human statistical performance. [Reprinted with permission from 
Hourstoa and Goldstein (1972).] 

density function which arc: the result of assigning the wrong 
harmonic numbers to the noise perturbed signal. This type of 
error becomes more likely as harmonics become more 
closel[y spaced in log frequency (as harmonic numbers in- 
crease). The other kind or error is caused by pitches in the 
main mode of the probability density function, but where the 
variance is high due to the low precision of the component 
frequency estimates at low and high frequencies. 

[;or fundamentals below 300 Hz, resolution improves as 
harmonic numbers increase until their frequencies reach the 
peak in the resolution curve of Fig. 5, thereby partially off- 
setting the degradation in performance due to the closer com- 
ponetit spacing for the low fundamentals. For high funda- 
mentals, as harmonic numbers increase, the wide component 
spacings imply that their frequencies quickly surpass the 
peak in the resolution curve, thereby causing a faster dete- 
riation in performance. 

ß The SPINET model shows a similar pattern relating har- 
monic number to pitch strength. For low fundamentals, the 
function first increases with harmonic number because the 

bandpass function [Eq. (5:)] increases with component fre- 
quency faster than the distance-dependent harmonic weight- 
ing fimction attenua•:es the contribution to pitch. For high 
fundamentals, even low-order harmonic contributions to 

pitch are attenuated by both the bandpass function and the 
harmonic weighting function [Eq. (9)]. The effect of the uni- 
modal (r/f function in the optimal processor theory is thus 
analogous to the effect of the bandpass function in the 
SPlNET model. 

Since the shape of the pitch function resembles the 
shape of the probability density function produced by the 
optimum processor, it is interesting to consider interpreting 
the deterministic model statistically for comparison. 
Houtsma (1979) did this with the models of Terhardt (1972, 
1973) and Wightman (1973) by taking the percent correct in 
performance as the ratio of' the height of the main pitch mode 
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to the sum of the heights of all the modes within a roughly 
half-octave "attentional" band around the main mode. 

When the SPINET model is analyzed in this way,: it does 
not produce a fundamental-frequency-dependent variation in 
percentage correct as is seen in the data and predicted by the 
optimum processor. This is because the entire pitch strength 
function, for a given pair of stimulus components with fixed 
harmonic numbers, scales across fundamental frequency 
while leaving the shape (that is, the relative heights of the 
modes) invariant. One method we are exploring to preserve 
the f0 dependence of the strength function, discussed above 
in the context of the dominance region, is to add a constant 
level of noise across frequency to the pitch function before 
taking the maximally activated pitch as the model output. 

III. SPINET SIMULATIONS 

A. Pitch shifts with component shifts 

When harmonic components Oc. = nfo, n = 1,...) are all 
shifted by a constant amount A in frequency so that' they 
maintain their spacing off0 (f,= nfo+ A, n = 1,...), the pitch 
shift in linear frequency is slower than that of the c•ompo - 
nents (Patterson and Wightman, 1976; Schouten etal., 
1962). Typical data show an ambiguous pitch region at shift 
values of A=lfo, /=0.5,1.5,2.5 ..... where the most com- 
monly perceived pitch jumps down to below the value off0. 
Figure 6(a) shows the pitch of components spaced by 
f0 =100 Hz as a function of the lowest component's har- 
monic number t. When the shift value A is near a harmonic 

off0 (A=/f0, l =0,1,2,...), then the pitch is Unambiguous and 
near 100 Hz. 

The model's correspondence with these data [Fig. 6(b)] 
is due to the gradual reduction in the contribution a compo- 
nent makes to a Pitch as it is mistuned, combined with the 
effect of filters whose widths are approximately constant in 
log coordinates for high frequencies. As the components shift 
together in linear frequency away from harmonicity, the 
higher components move into the shallow skirts of the filters 

centered at harmonics of the original nominal pitch fre- 
quency much more slowly than do the lower components, 
thereby slowing the shift away from the original pitch. For 
the same reason, as the lowest stimulus component increases 
in harmonic number, all components are moving through 
broader filters, so the slopes of the pitch shift become less 
steep, as can be seen in both the data and the model output in 
Fig. 6. 

B. Pitch shift slopes with component shifts 

One of the main findings of Patterson and Wightman 
(1976) was the difference in the õlope of the pitch shift be- 
tween low and high fundamentals as the components shift 
while maintaining their spacing in linear frequency [Fig. 
7(a)]. The slopes converge as lower components are re- 
moved. Figure 7(b) shows a plot of the slopes found in the 
model measured at the point where components are har- 
monic. The difference in slopes for the two fundamental fre- 
quencies is due to the region of dominance induced by the 
combined effect of three weighting functions: the BB [-Eq. 
(5)] broad bandpass function, the harmonic falloff [Eq. (9)] 
giving more weight to low-order harmonics, and the inhibi- 
tory interactions [-Eq. (7)] which, being of roughly constant 
width in log frequency, inhibit the higher frequency compo- 
nents more than the low. 

These weighting functions are insufficient to explain the 
entire data set. When the slope of the least-mean-squares 
best-fitting straight line through all the pitches is measured, 
including those in the ambiguous regions, then the model 
produces too little difference in slopes between the different 
f0's [Fig. 7(c)]. There are several possible explanations for 
the disparity between the model measurements when the am- 
biguous region is included, and the data of Patterson and 
Wightman (1976). 
1. Combination tones 

The "second effect of pitch" is that when the shifting 
stimulus consists of lower frequency components, the shift of 
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the pitch is steeper than when it consists of higher frequency 
components. The addition of the fi-n(fi+•-fi) combina- 
tion tones (Goldstein, 1967) arising from the peripheral in- 
teraction of two successive components would be exactly at 
the frequencies in the equal spacing pattern of the Patterson 
and Wightman (1976) paradigm, albeit at lower levels. Their 
effect is thus easy to predict and, as noted by many authors 
(e.g., Smoorenburg, 1970), would indeed be to make the 
slopes greater. By the SPINET mechanism discussed for the 
first effect of the pitch shift, the addition of lowel' compo- 
nents would increase the slope for the shift in the model as 
well. 

2. Secondary modes 

The slopes measured by Patterson and Wightman (1976) 
were the slopes of mean pitch matches made by the subjects. 
In the ambiguous region, there are more modes in the pitch 
function whose strength rivals that of the main mode. Above 
the fundamental, the secondary modes are higher than the 

main mode; below the fundamental, the secondary modes are 
lower. If subjects matched to these secondary modes in the 
ambiguous region, the mean pitch would be further from the 
main mode and thus the slopes would be steeper in the am- 
biguous region. 

3. Grouping effects 

In his doctoral dissertation, de Boer (1956) suggested 
that the second eft%ct of the pitch shift, the systematic de- 
crease in the slope of the shift as lower components are 
eliminated from the signal, could be due to a preferential 
weighting given to the lower components. Without consider- 
ing component groupings, it does not seem logical that the 
components that are shifting the fastest out of their harmonic 
relationship with the rest of the components (measured as a 
percentage shift from their harmonic frequency) should be 
the ones to be accorded the most weight. Furthermore, the 
current model explains the rate of the shift using the fact that 
the higher components move through the frequency-scaled 
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Gammatone filters more slowly than do the lower compo- 
nents, thereby maintaining their contribution to pitches near 
the spacing frequency at higher shift values th an do the 
lower components. 

However, complexes in the ambiguous region often 
sound like multiple sources. If there exists a separate group- 
ing process with the capacity to separate the influence on 
pitch of different frequency regions of the peripheral (in this 
case spectral) representation of the signal, then the pitch be- 
ing primarily influenced by the lower tones would move 
faster than it does when it is forced to take into account all 

frequency regions of the peripheral representation. The addi- 
tion of such a grouping mechanism to a larger architecture 
containing the SPINET model would thus produce better es- 
timates of the shift slopes in the ambiguous region, while 
leaving the good performance of the model near harmonic 
regions intact. 

C. The tritone paradox 

Deutsch (1992a, 1992b), has investigated a phenomenon 
called the tritone paradox. Stimuli are composed of sinUsoids 
spaced by octaves with a raised cosine amplitude envelope 
across the entire range of hearing. In musical notation, notes 
spaced by an octave have the same pitch class (the same 
name, e.g., C$), which is suggestive of their perceptual simi- 
laxity. Thus perceptually fused complexes of octave-spaced 
components have a clear pitch class, but an ambiguous oc- 
tave designation. Shepard (1964) found that, when presented 
with two successive stimuli of different pitch classes, the 
interval that subjects identified was that corresponding to the 
shortest distance between the two pitch classes. Thus the 
interval C-G was heard as descending 5 semitones rather 
than as ascending 7 semitones. Indeed, Shepard found that 
when a sequence of these octave-component complexes is 
presented which repeatedly traversed the semitone scale, 
pitch appears to ascend endlessly in a kind of barbershop 
pole illusion, despite the octave equivalence of notes spaced 
by 12 semitones. 

When the interval between two such complexes is ex- 
actly half an octave (a "tritone" in musical terminology), 
proximity obviously cannot be used to judge the direction of 
the interval. In fact, Deutsch found strong intrasubject con- 
sistency of the judgments depending upon the pitch class of 
the tones. For tdtones based on half the pitch classes, the 
intervals were heard as ascending, while intervals based on 
the other half were heard as descending. 

These data are consistent with the explanation that pitch 
judgments are all taken to be within a single octave, which is 
the behavior exhibited by the SPINET model, as well as the 
virtual pitch model (Terhardt et al., 1982b), in response to 
such stimuli. Figure 8 shows the SPINET model's circularity 
of the judgments with pitch class. The effect is due to a 
combination of the broad bandpass function [Eq. (5)] and the 
falling harmonic weighting function [Eq. (9)]. If, for ex- 
ample, only the broadband filter were operative and all har- 
monics were weighted equally, then the lowest possible sub- 
multiple of the components would always be the chosen 
pitch. The combination of the two mechanisms results in all 
pitches occurring within an octave that is centered below the 
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FIG. 8. The model response to complex tones composed of components 
spaced by octaves. When the two tfitone separated notes that comprise the 
interval span the discontinuity in the pitch function, the interval is heard as 
falling; otherwise it is heard as rising. 

peak in the amplitude envelope of the stimulus, and well 
above the lowest possible pitch (Fig. 8). A tritone interval 
that spans the discontinuity in the pitch function of Fig. 8 
produces nominal pitch values that descend, while the same 
interval comprised of pitch classes that do not span the dis- 
continuity produces nominal pitch values that ascend. The 
variability that Deutsch found between subjects can be ex- 
plained in model terms by the manipulation of the BB and 
harmonic weighting functions [Eqs. (5) and (9)]. Small 
changes in the parameters governing these functions shift the 
octave region of maximal pitch responses without substan- 
tially affecting the response to other pitch stimuli. 

D. Rippled noise spectra 

Noise with a rippled spectrum is also capable of produc- 
ing a pitch sensation. One such spectrum is produced by 
summing Gaussian white noise with itself delayed by an in- 
terval •-. The average spectral power density is 

•b(f,•',g) = I +g cos(2'n'f•'), (10) 

where g is the gain parameter applied to the delayed signal 
(Bilsen and Ritsma, 1970). The result is often referred to as 
Cos+ noise, and has peaks separated by l/v. For Cos+ 
noise, the peaks are at harmonics of the frequency corre- 
sponding to the reciprocal of the delay v, and a pitch is 
induced at this frequency. The SPINET response is shown in 
Fig. 9(a). 

If a delayed white noise signal is subtracted from itselL 
the result is Cos- noise which has an average power spec- 
trum density of 

•b(f,v,g) = 1 -g cos(2½rf•'). (11) 

The Cos- spectrum is thus seen to be a shifted version of 
the Cos+ spectrum with a shift value equal to 1/(2•-). These 
rippled noise stimuli produce a pitch set/sation similar to the 
residue pitches induced with tones at the locations of the 
noise peaks. Specifically, the Cos- spectrum produces an 
ambiguous pitch that is generally matched to 0.9/v and 1. l/v 
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[see Yost et al. (1978) for a review]. This should not be 
surprising, as the peaks are in the same locations as 'the tones 
in the "ambiguous region" discussed in Sec. III A. Figure 9 
shows the SPINET model response to rippled noise which 
shows peaks near 0.9/r and 1.1/r, the location of the most 
frequently matched pitches. 

œ. Pitch of narrow bands of noise 

Von B•k•sy (1963) reported that pitches cou]M be ob- 
served corresponding to the upper and lower edges of an 
octave band of noise between 400 and 800 Hz, and made the 
analogy to Mach bands at luminance edges in vision (Mach, 
1865). Small and Daniloff (1967) used noise for •natching 
with cutoff frequencies in a region an octave above, ,or below 
the test stimulus. They found that low- and high-pass filtered 
noise could invoke a pitch sensation corresponding to the 
noise edges when the cutoff frequencies were as high as 10 
kHz for both low- and high-pass noise, and as low as 80 Hz 
for high-pass noise and 600 Hz for low-pass noise. When the 
bandwidth of the noise is less than approximately 1/5 octave, 
the pitch is heard to be near the center of the band of noise 
(Fastl, 1971), and only at larger bandwidths do pitches begin 
to show at the edges of the noise. Figure 10 shows the re- 
sponse of the SPINET model to bands of noise created by 
summing randomly spaced sinusolds (spaced by an average 
of 2 Hz) with random phase in bands centered ml 500 Hz, 
with bandwidths of 1/10, 1/5, and 2/5 of an octave. The pitch 
functions are averaged over ten trials. The model chooses the 
location of the maximum as the pitch on each trial.. and in- 
dividual trials tend to have one dominant peak even when the 
average function shows a peak at both noise band ,edges. 

E The dominance region 

It has long been known that certain harmordcs have 
more influence on pitch perception than others'.. Ritsma 
(1967) and Plomp (1967), using a similar experimental pro- 
cedure, showed that the region of the third, fourth, and fifth 

harmonics is dominant in determining the pitch of a har- 
monic complex. Plomp presented subjects with two stimuli 
A and B in succession, where 

12 

A = 15', cos(2rrnft) (12) 
rl = I 

and 

m 12 

B=• cos[2zrn(0.9f)t]+• cos[2,rn(l.lf)t]. 
r• = 1 m + 1 

(13) 

Plomp asked subjects whether the pitch of B was higher or 
lower than of A. Responses were plotted as a function of m, 
the cntoff number for harmonics above which harmonics of 

B were •stuned up,. and below which they were mistuned 
down. For fundamental frequencies above 1400 Hz, subjects 
reported that the pitch of B was lower than A for all m; that 
is, even when only one component was lower, the pitch was 
perceived as moving down. For lower fundamentals, m could 
be as high as 5, and the pitch of B was still identified as 
being higher. Since for lower fundamentals, the direction that 
the third, fourth, and fifth h•monics were tuned determined 

which way the pitch was he•d as moving, these hmmonics 
became •own as constituting the dominance region. 

The SPINET model predictions for the dominance re- 
gion can be seen in Fig. • 1 for fundamental frequencies of 
100 and 1400 Hz. The plot shows the pitch strength function 
in response to the Plomp (1967) stimulus B for five different 
values of m between l and 5. The two peaks are centered 
around the fundamental frequency of stimulus A. For the 
100-Hz fundamental, the l)e• on the lower side of A does 
not approach the value of the peak on the high side until 
m>4, while for 1400 Hz, the peak on the lower side is maxi- 
mal for m > 1. The contribution that a component makes to a 
pitch falls off more quickly with harmonic number for high 
fundamentals even though the hamonic weighing function 
has the same slope [M in Eq. (9)] for all pitches because of 
the steep falloff in the BB function [Eq. (5)] at high ffequen- 
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cies. This causes the dominance region to move significantly 
toward the lowest harmonic as the fundamental increases. 

G. Distant modes and octave drops for ambiguous 
stimuli 

Much of the pitch shift data has been gathered by focus- 
ing the attention of experimental subjects on a nan'ow pitch 
region centered at f0, and has thus neglected the true extent 
of the ambiguity of the pitch sensation in the ambiguous 
region (Patterson and Wightman, 1976; Schouten etal., 
1962). As Schouten et aL (1962) showed, the distribution of 
pitch matches is multimodal with the various modes being 
clearly separated by a region where no matches occur. Sev- 
eral of the modes are near fo, but some modes are further 
away. In the data on pitch as a function of the shift in equally 
spaced components, the ambiguous region is characterized 
by the components being near the frequencies 
f,,=fo(l12+n), which can be written as Nfol2 for odd in- 
tegers N. This ambiguous region, where pitch identification 
jumps discontinuously from one side offo to the other when 
matching is constrained to a narrow band about f0, is the 
region where all the components are near the odd harmonics 
of fo/2. Gerson and Goldstein (1978) showed that, in fact, 
when the lowest frequency component in the sfimulns was an 
odd multiple of fo/2, the lower pitch, fo/2, could be heard 
when pitch matches were not restricted to be in a narrow 
band around f0- Some of their data for a four-component 
stimulus are summarized in Fig. 12(a). The model's maxi- 
mum pitch as a function of the lowest harmonic: number, 
without the restrictions of an attentional window, predicts 
this octave drop, as shown in Fig. 12(b). 

As can be seen in the Gerson and Goldstein data, the 

relationship between the lowest harmonic number and sub- 
jects' pitch matches is one-to-many (Smoorenburg, 1970). 
Since the lower octave pitch match implies the assignment of 
nonsuccessive harmonic numbers to the stimulus compo- 
nents, these data motivated the least-mean-squares template 

matching extension :o the optimal processor theory so that it 
no longer presumed that the stimulus was comprised of suc- 
cessive harmonics of some fundamental frequency (Gerson 
and Goldstein, 1978; Goldstein et al., 1978). In addition, as 
the lower components are removed, the octave drop becomes 
less likely. Under these stimulus conditions, model behavior 
is best understood by examining the entire pitch function 
rather than just the maximal pitch. 

Raatgever and Bilsea (1991) provide further data for 
comparison. They presented "anharmonic" noise stimuli that 
were produced by passing white noise through a delay line 
with delay T and feeding a fraction g of the delayed version 
back to the input with a sign inversion. This is different from 
the rippled noise stimuli discussed earlier where only a delay, 
but no feedback, is used. These comb-filtered noise signals 
have peaks and valleys at the same spectral locations as 
tippled noise, but the peaks are sharper (Raatgever and Bak- 
kum, 1986), having power spectra of the form 

l 

P(f )= I -2g cos(2•rfT)+g •" (14) 
The artharmonic noise was passed through a high-pass filter 
with a variable cutoff frequency. As the lower peaks in the 
anharmonic spectrum are' removed, the perception of the 
lower octave percept disappears, giving way to matches on 
either side of the pitch with the nominal frequency of the 
spectral peak spacing; (Fig. 13). The SPINET model behavior 
can be seen by looking at •he whole pitch function, where the 
lower octave peak moves from having the highest level of 
actiwKion to a relatively lower level as the filter cutoff fre- 
quency increases [Fig. 14•a)-(d)]. 

H. The phase of a mistuned component 

The SPINET model is sensitive to aspects of the fine 
temporal structure of the input signal because the spectral 
representation on which the pitch decision is based derives 
from finite time mea.•urements of the signal. Thus the model 
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can be tested on multitone complex stimuli with varying 
phase relationships. As in the autocorrelation model of Med- 
dis and Hewitt (1991), SPINET pitch measurements are sen- 
sitive to relative phases of components by virtue of within- 

channel cancellation or reinforcing interactions. If 
components are completely resolved, no phase effects appear 
in the pitch output. 

Hartmann (1988) performed a discrimination experiment 
using a harmonic signal composed of the the first seven har- 
monics of 800 Hz in one interval. In the other interval, the 

same stimulus was used except that the fourth harmonic was 
mistuned by 2.5%. Hartmann manipulated the duration of the 
signal and found as an overall trend that the subjects did 
better the longer the stimuli. The improvement was not 
monotonic, however, but had dips and troughs as a function 
of duration. Discounting the long-term improvement trend, 
the dips and troughs were cyclic with the period of the stimu- 
lus. 

Meddis and Hewitt (1991b) showed that their autocorre- 
lation model produces the same pattern of dips and troughs, 
but since they used only one time constant for the running 
autocorrelation functions, the gradual improvement was not 
superimposed. Indeed, duration per se is not the the critical 
variable; rather, it is the phase of the signal over the time 
window in which the pitch function is measured. 

Meddis and Hewitt (1991b) plotted this effect by com- 
puting the Euclidean distance between the model summary 
autocorrelation function for the nonmistuned component 
stimulus and the stimulus with the mistuned component at 
different "durations." They assumed that the percent correct 
(which Hartmann measured) would have the same trend as 
this distance metric. The SPINET spectral model produces 
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octave below f0 disappears. 

874 J. Acoust. Soc. Am., Vol. 98, No. 2, Pt. 1, August 1995 Cohen et al.: Spatial pitch network 874 

Downloaded 10 Jan 2011 to 137.132.123.69. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



100 -- 

90 

8O 

5O 
] I I I 

20 4,0 60 80 

Duration (ms) 

1.13 

1.12 
u 

*• 1.11 

• 1.1 
• 1.09 

3.08 

l.O• 
lOO 

50 100 3.50 200 250 300 350 
MLst•ned c•ponent phasephase 

FIG. 15. (a) Data of Hartmann (1988). The long-term improvement shows a duration effect; the superimposeJ periodic pattern shows a pha• eYt•ct on 
discriminability. (b) The Euclidian distance between the ,nodel phch function in response to the reference harmonic complex and in response to the complex 
with the mistuned fourth component (corresponding the "phase= 180" condition in the Hartmann data). While phase is the eft•ctive variable, the $1imulus has 
a l•riod of 50 ms so that 3/50 deg maps to durations of SOn ms, n - 1,2,3 .... 

the same phase sensitivity when interpreted in this fashion 
(Fig. 15) but, like the autocorrelation model, shows no long- 
term trend due •o the absence of any integration mechanism 
that spans time interval• on the scale of 100 ms. 

I. A spectral explanation of a classical phase 
experiment 

To test human sensitivity to phase, Ritsma and Engel 
(1964) used a quasifrequ'rncy modulated (QFM) signal with 
the center frequency colnponent shifted in relation to the 
flanking tones by 90 deg: 

ß x(t) = 0.Sin sin[2 w(n- 1 )ft] + sin[2wnft+ •t/2] 

+0.Sm sin[2w(n+ l)ft]. (15) 

When n, the harmonic number of the middle component, was 
egual to 11 and 13, Ritsma and Engel (1964) found that 
subjects matched pitches to both the fundamental frequency 
f and to 2f. When n=12, however, they found pitch 
matches above and below f and 2 f, but rarely in between. 
The results ard • consistent with a fine temporal structure 
"peak-picker" algorithm which they advocated. Wightman 
(1973b) was unable to d, uplicate the results of the experi- 
ment, however, finding pi,tc•hes atf (•e region about 2 f was 
not tested) for each n = 10,t !, 12,13,-thereby refuting the idea 
of phase sensitivity to such stimuli. Wightman did not test 
for pitches near 2 f. 
" Meddis' and Hewitt (199lb) showed that their model 

predictions agreed with Wightman•s (1973b) findings that for 
each n = 10,11,12,13, pitches are found atf but not nearby. In 
the region of 2 f, however, they found pitches slightly above 
or slightly below 2 f, but not at .2 f when n is even, and at 
exactly 2 f for n odd, which agrees with the Ritsma and 
Engel's (1964) observations. 

A'possible explanation of these data is in terms of the 
fine tetnporal structure of the signal (Ritsma and Engel, 
1964; Moore, 1977). In both phase cases, the envelope has a 

major peak at the fundarrental period !If o, and a secondary 
peak at 1/2 f0. For the zero-phase condition, the secondary 
envelope peak is muzh weaker than the major peak, while for 
the phase-shifted cor/dition, the two envelope peaks are al- 
most equal in magnitude. Now consider how the fine tempo- 
ral structure is superimposed on the envelope structure. 
When the harmonic•nurnber n of the center component is 
odd, the fine structure has peaks that correspond with both 
envelope peaks. When n •s even, however, the fine structure 
has peaks that flank the 1/2 fo envelope peak and line up 
exactly only with the llfo envelope peak. If pitch is deter- 
mined by mea•urin• the period between fine-structure peaks 
that occur near envelope peaks, the system could make pitch 
matches near 2 f0 when n is even. 

The pitch outpat of the SPINET model also agrees with 
Ritsma and Engel's (196•,) split-peak findings around 2 f0 
for n even, but the difference between the shape of the pitch 
functions near 2 f0 for n even versus n odd can be explained 
without reference to temporal fine structure, and is• in fact, 
independent of the phase shift of the middle stimulus com- 
ponent. Figure 16 •,.hows the SPINET pitch functions for 
n = 12, and Fig. 17 shows the same for n = 11. 

The explanation for the behavior parallels the explana- 
tion for the ambiguous region in the paradigm of equally 
spaced shifted components discussed in Sec. Ill G. When n 
is even, two of the three components are odd multiples offo, 
and therefore are shifted to frequency values that are exactly 
halfway between harmonics of 2 f0. The presence of these 
two components maizes the 2 fo pitch match unlikely. In the 
SPINET model, thes: two components contribute to a dip in 
the pitch function, workiag against the middle component 
that contributes to the strength of the 2 f0 pitch. When n is 
odd, two of the three components are even harmonics of fo 
and are therefore (successive) harmonics of 2 fo- A pitch 
peak a 2 fo, regardless of the component phase relation- 
ships, is thus not surprising. 

Further contributing to the absence of any pitch match at 
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FIG. 16. Model pitch functions in response to a three-tone stimulus of 2000 + - 167 Hz (a) near fo= 167 Hz, components at 0 phase: (b) near fo= 167 Hz, middle 
component at 90-deg phase:, • (c) near 2 f0=333 Hz, components at 0 phase; (d) near 2 fo=333 Hz, middle component at 90-deg phase. The pitch function 
always peaks at the fo = 167 Hz, bu.t dips at 2 fo, regardless of phase, when the middle component is even (here n = 12). 

2 f0 when n is even is that the two anharmonic peaks are on 
the "edge" of the signal spectrum, while the only harmonic 
of 2 f0 is interpolated between them and is subject to the 
"partial masking" effect discussed at the end of Sec. III B. In 
terms of the mSdel, this edge effect occurs because the com- 
petitive ihteractions [Eq. (7)] between frequency locations in 
the spe.•ral representation enhance the edges of the excita- 
tion pattern coming from the bank of peripheral filters. 

IV. CONCLUSION 

The spatial pitch net model generates a spatial represen- 
tation of pitch from a spectral representation of the auditory 
stimulus. A key feature of the model is a set of weighting 
functions for harmonics that decrease with harmonic number. 

The weighting functions obviate the need for an a priori 
attentional window to prevent all subharmonics of a given 
pitch from assuming an equal pitch strength. The forms of 
the weighting functions are capable of explaining the domi- 
nance regi, on data for harmonic contributions to pitch. The 
model car; handle continuous spectra such as rippled noise as 
well as the more standard spectra of 0iscrete tones. 

The SPINET model is constructed using components 
similar to those found in several different spectral and neural 
network models. The synthesis has enabled the model to be 
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successfully tested on a breadth of data not attempted by any 
single spectral model previously. Using one model to explore 
such a range of data brings a coherency of explanation to, for 
example, the utiHt• of center-surround mechanisms for mod- 
eling rippled noise data, Psychophysically and physiologi- 
cally measured inhibitory interactions, and phenomena such 
as partial masking and edge pitch. Due to the frequency com- 
ponent interactions in the Peripheral filters used to derive the 
spectral representation, some temporal effects such as com- 
ponent phase relationships can be simulated which are not 
typically explored with formal spectral models. 

The SPINET model produces as output a strength value 
across a spatial representation of pitch, rather than the fre- 
quency of the most likely pitch. It is based on the idea of a 
"central spectrum" representation of the auditory signal, 
rather than the fine structure of a temporal waveform (Lick- 
lider, 1951; Meddis and Hewitt, 1991). A spatial representa- 
tion of activation across pitch in response to each stimulus is 
important in part because it can provide an explanation for 
data on msponges to ambiguous stimuli. More importantly, 
such a spatial rgpresentation can be naturally integrated into 
the dynamics of a larger architecture for auditory and speech 
perception (cf. Boardman et al., 1993, 1994; Cohen and 
Grossberg, 1986; Cohen et al., 1988; Govindarajan et al., 
1994; Grossberg et al., 1994; Grossberg and Stone, 1986). 
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FIG. 17. Model pitch functions in response to a throe-tone stimulus of 2000 + - 182 Hz: (a) near f0 = 182 Hz, components at 0 phase; (b) near fo = 182 Hz, 
middle component at 90-deg phase; (c) near 2 fo=364 Hz, components at 0 phase; (d) near 2 f0=364 Ha, middle component at 90-deg phase. The pitch 
function always peaks at the fo = 182 Hz and at 2 fo, regardless of phase, when the middle component is odd (here n = I 1). 

For example, if attentional factors are used to prime a par- 
ticular frequency region, then the spatial pitch representation 
plays an important role in understanding how attenfional fo- 
cusing can alter the ensuing pitch percept. This kind of 
model can also use pitches as cues to group together the 
components of the same sound source and to separate differ- 
ent sources from one another in the auditory scene. Govin- 
darajan et al. (1994) have embedded the SPINET model into 
a larger neural architecture for auditory scene analysis and 
source separation in which both pitch and spatial location 
cues can be used to separate harmonically overlapping sound 
sources, as in a cocktail party situation. 
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APPENDIX: SUMMARY OF DATA ADDRESSED BY 
VARIOUS MODELS 

Tables A1 and All summarize the pitch data that have 
been addressed by various models, either in the original 

TABLE A[. Models and the data that they explicitly address. 

Mistune I Existence Dominance Pitch Pitch shift 

Model component region region shifts slopes 

SPINET • iXT 4 4 4 
Goldstein • / •b • 4 
Wightman NT '1 NTa 4 4 
Meddis and • / 4 4 4 
Hewin 

Yost NT NT NT ,/ 4 
Terhardt NT 'l v • • 
Duifhuis NT ,1 v NT NT 

aBUt nol a great fit, as discussed in the text. 
•But with a different interpretatiou than the deterministic models. 
'Need to add combination Iones. 

dThey d•d not run the Piomp dom .nance region experimental paradigm, but 
presumably they could since the!, invoke the dominance region concept in 
explaining the performance of their model. 

•But not a great fit, as discussed i a the text. 
tPresumably only, discussed by Patterson and Wightman (1976). 
IPresumably only, discussed by Patterson and Wighinton (1976). 
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TABLE All. Models and the data that they explicitly address. 

Amb. 

region 
Multiple octave Tritone 

Model pitches drop Am noise Cos+ Cos- paradox 

SPINET 4 v x • 4 d 
Goldstein X a 4 X • 4 c bit 
Wightman d N Ta X d X ½ NT 
Meddis and v NT 4 v ,1 NT 
Hewitt 

Yost • NT X • 4 NT 
Terhardt J 4 X NT N.T 4 
Duifhuis •t NT X NT NT bit 

'But see Duithuis' extension of Goldstein's model below, 

bDiscussed by Bilsen and Golstcin (1974), they look for the optimal fit 
between the spectrum and a sinusoidal function. 

½Presumably the same as for Cos+ noise (Bilsen and Golstein, 1974). 
abut presumably would with a spectral attenfional window. 
½Yost and Hill (1979); Hill and Yost (1978). 

modeling work, or in modified versions or discussions by the 
original authors or others in the literature. A "4" means that 
the model produces a reasonable fit to the data, "NT" (not 
tried) means there has been no published discussion, •,nd 
"X" means that the model has been shown not to work for 
the particular data. This table is intended only for a quick 
comparison, and it should be understood that many of the 
models have several different incarnations that might change 
an entry in the table. 

Bilsen, E (1977). "Pitch of noise .sig'nals: Evidence for a "central spec- 
trum," J. Acoust. Soc. Am. 61, 150-159. 

Bilsen, E, and Goldstein, J. (1974). "Pitch of dichotically delayed noise and 
its possible spectral basis," J. Acoust. Soc. Am. 55, 292-297. 

Bilsen, E, and Ritsma. R. (1970). aSome parameters influencing the per- 
ceptibility of pitch," J, Acoust. Soc. Am. 47, 469-475. 

Bilsen, F., ten Kate, J., Buunen, T., and Raatgever, J. (1975). "Response of 
single units in the etchlear nucleus of the cat to cosine noise," J. Acoust. 
Soc. Am. 58, 858-866. 

Boardman, I.. Cohen, M. A., and Grossberg, S. (1993). "Variable rate work- 
ing memories for phonetic categorization and invariant speech percep- 
tion," in Proceedings of the •Vorld Congress on Neural Networks, Port- 
land, Oregon {Erlbanm. Hillsdale, NJ), Vol. 3, pp. 2-5. 

Boardman, 1., Grossberg. S., and Cohen, M. (1994). "Neural dynamics of 
phonetic trading relations for variable-rate CV syllables," Technical Re- 
port CAS/CNS-TR-94-037, Boston University, Boston. MA. 

Bregman, A. (1990). Auditory Scene Analysis (MIT, Cambridge). 
Carpenter, G. A., and Grossberg, S. (1991). Pattern Recognition by Self- 

organizing Neural Networks {MIT, Cambridge). 
Cohen. M.. and Grossberg, S. (1986). "Neural dynamics of speech and 

language coding: Developmental programs, perceptual grouping, and 
competition for short term memory." Hum. Neurobiol. 5. 1-22. 

Cohen, M., Grossberg, S., and Stork, D. (1988). "Speech perception and 
production by a self-organizing neural network," in Evolution, Learning, 
Cognition and Advanced Architectures, edited by Y. Lee (World Scientific, 
Hong Kong). 

Cohen, M., Grossberg. S., and Wyse, L. (1992a). "Harmonic weighting 
functions in a neural network model of pitch detection and representa- 
tion," in Proceedings of the International Joint Conference on Neural 
Networks. Beijing, P.R. China (Institute of Electrical and Electronic Engi- 
neers, Piscataway, NJ), Vol. 2, pp. 149-154. 

Cohen, M., Grossberg, S., and Wyse. L. (1992b}. "A neural network for 
synthesizing the pitch of an acoustic source," in Proceedings of the Inter- 
national Joint Conference on Neural Networks, Baltimore, Maryland (In- 
stitute of Electrical and Electronic Engineers, Piscataway, NJ), Vol. 4, pp. 
649-654. 

Dadson, R., and King, J. (1952). "A determination of the normal threshold 
of hearing and its relation to the standardization of audiometers," J. Laryn- 
gol. OtoL 66. 366-378. 

Dai, H., Scharf, B., and Buus, S. (1991). "Effective attenuation of signals in 
noise under focused attention," J. Acoust. Soc. Am. 89, 2837-2842. 

de Boer (195ij). 
de Boer, E. {1976). "Pitch theories unified," in Psychophysics and Physiol- 

ogy of Hearing, edited by E. Evans and J. Wilson {Academic, London). 
Deutsch, D. (1992a). "Paradoxes of musical pitch," Sci. Am. 264, 88-95. 
Deutsch, D. (1992b). "Some new pitch paradoxes and their implications," 

Philos. Trans. R. Soc. London 336, 391-397. • 

Duifhuis, H., Willeros, L. E, and Sluyter, R. (1982). "Measurement of pitch 
in speech: An implementation of Goldstein's theory of pitch perception," 
J. Acoust. Soc. Am. 71, 1568-1580. , 

Fasd, H. (1971). "Ueber tonhbhenempfindungen bei rauschen," Acustica 
25, 350-354. 

Gerson, A., and Goldstein, J. (1978). "Evidence for a general template in 
central optimal processing for pitch of complex tones," J. Acoust. Soe. 
Am. 63. 498-510. 

Goldstein, J. 0?67). "Auditory nonlinearity," J. Acoust. Soc. Am. 41,676- 
689. 

Goldstein, J. (1973). "An optimum processor theory for ths central forma- 
tion of the pitch of complex tones," J. Acoust. Soc. Am. 54, 1496-1515. 

Goldstein, J., Getson, A., Smlovicz, P., and Furst, M. (1978). "Verification 
of the optimal probabilistic basis of aural processing in pitch of complex 
tones," J. Acoust. Soc. Am. 63, 486-497. 

Govindarajan, K. K., Grossberg, S., Wyse, L. L., and Cohen, M. A. 0994). 
"A neural netwo• model of auditory seeae analysis and source segrega- 
tion." Technical Report CAS/CNS-TR-94-039, Boston University, Boston, 
MA. 

Grossberg. S. (1973)•.. "Contour enhancement, short-term-memory, and con- 
startties in reverberating neural networks," Stud. Appl. Math. 52, 217- 
257. 

Grossberg. S. (1976•. "Adaptive pattern classification and universal recod- 
ing, I: Parallel development and coding of neural feature detectors," Biol. 
Cyb. 23, 121-134, 

Grossberg, S. (1982). Studies of Mind and Brain: Neural Principles of 
Learning, Perception, Development, Cognition, and Motor Control (Klu- 
wet, Dordrecht). 

Grossberg, S. (1988). "Nonlinear neural networks: Principles, mechanisms, 
and arcMtectures," Neural Networks 1, 17-61. 

Grossberg, S., Boardman, I., and Cohen, M. {1994). "Neural dynamics of 
variable-rate speech categorization," Technical Report CAS/CNS-TR-94- 
038, Boston Uniy. grsity, Boston. MA. 

Grossberg, S., and Stone, G. (1986). "Neural dynamics of •vord recognition 
and recall: Attentional priming, learning and resonance," Psychol. Rev. 93, 
46 -74. 

Hartmann, W. (1988). "Pitch perception and the segregation'and integration 
of auditory entities," in Auditory Function: Neurobiological Bases of 
Hearing, edited by G. M. Edelman, W. E. Gall, and W. M. Cowan (Wiley, 
New York), pp. 623-645. 

Hill, R., and Yost, W. (1978). "Strength of the pitches associated with ripple 
noise," J. Acoust. Soc. Am. 64, 485-492. 

Holdsworth, J., Nimmo-Smith, I., Patterson, R., and Rice, P. (1988). "Imple- 
menting a gammatone filter hank," Annex C of the SVos Final Report: The 
auditory filter bank, APU Report No. 2341. 

Houtgast, T. (1977). "Auditory-filter characteristics derived from direct- 
masking data and pulsation-threshold data with a rippled-noise masker," 1. 
Acoust. Soc. Am. 62, 409-415. 

Houtsma, A. (1979). "Musical pitch of two-tone complexes and predictions 
by modem pitch theories," J. Acoust. Soc. Am. 66, 87-99. 

Hourstoa, A., and Goldstein, J. (1972). "The central origin of the pitch of 
complex tones: Evidence from musical interval recognition," J. Acoust. 
SOC. Am. 51, 520-529. 

Kohonem T. (1989). Self-organization and Associative Memory (Springer- 
Verlag, Berlin), 3rd ed. 

Licklider. J. (1951). "A duplex theory of pitch perception," Experientia 7, 
128-133. 

Mach, E. (1865). "'0her die wirkung der diumlichen vertheilung des lich- 
treizes auf die netzhaut, !," Sitzungsber. Math.-Naturwiss. KI. Kaiser. 
Akad. Wiss. 52, 303-322. 

Metdis, R., and Hewitt, M. (1991a). "Virtual pitch and phase sensitivity of 
a computer model of the auditory periphery. I: Pitch identification," J. 
Aeoust. Soc. Am. 89, 2866-2882. 

878 d. Acoust. Soc. Am., Vol. 98, No. 2, Pt. 1, August 1995 Cohen et al.: Spatial pitch network 878 

Downloaded 10 Jan 2011 to 137.132.123.69. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



Mcddis, R., and Hewitt, M. (1991b). "Virtual pitch and phase .sensitivity of 
a computer model of the auditory periphery 11: Phase sensitivity," J. 
Acoust. Soc. Am. 89, 2883-2893. 

Moore, B., and Glasberg, B. (1983). "Suggested formulae for calculating 
auditory filter bandwidths and excitation patterns," 1. Acoust. Soc. Am. 
74, 750-753. 

Moore, B., 61asberg, B., and Peters, R. (1985). "Relative dominance of 
individual partials in determining the pitch of complex tones." 1. Acoust. 
Soc. Am. 77, 1853-1860. 

Moore, Glasberg, and Shailer (1984) 
Moore, B. (1977). "Effects of relative phase of the components on the pitch 

of three-component complex tones," in Psychoph.vsics and t¾,ysiology of 
Hearing, edited by E. Evans and J. Wilson (Academic, New York). 

Patterson, R., Holdsworth, J., Nimmo-Smith, I., and Rice. P. 11988). "An 
efficient auditory filterbank based on the gamraatone function," in Annex 
B of the SVos Final Report: The auditory filter bank, APU Report No. 
2341. 

Patterson, R., and Wightman, F. (1976). "Residue pitch as a function of 
component spacing," J. Acoust. So(:. Am. 59, 1450-1459. 

Plomp, R. (1967). "Pitch of complex tones," 1. Acoust. Soc. Am. 41, 1526- 
1533. 

Raatgever, ]., and Bakkum, M. (1986). "Spectral dominance fnr noise sig- 
nMs with monaural and dichotic comb spectra," in Proceedings of the 12th 
International Congress on Acoustics, Toronto, Vol. B 2(4). 

Raatgever, 1., and Biisen, F. (1991). "The pitch of anharmonic comb filtered 
noise reconsidered," in Auditory, Physiology and Perception, edited by Y. 
Cazals, C. Demany, and K. Homer (Pergamon, Oxford), Vol. 83 of Ad- 
vances in the Biosciences, pp. 215-222. 

Ritsma, R. (1962). "Existence region of the tonal residue I," 1. Acoust. Soc. 
Am. 34, 1224-1229. 

Ritsma, R. (1967). "Frequencies dominant in the perception of the pitch of 
complex sounds," I. Acoust. Soc. Am. 42, 191-198. 

Ritsma, R., and Engel, F. (1964). "Pitch of frequency-modulatexl signals," J. 
Acoust. Soc. Am. 36, 1637-1644. 

Schefl•rs, M. (1983}. "Simulation of auditory analysis of pitch: An elabo- 
ration on the DWS pitch meter," J. Acoust. Soc. Am. 74, 1716-1725. 

Schouten, 1., Ritsma, R., and Cardozo, B. (1962). "Pitch of the residue," J. 
Acoast. Soc. Am. 34, 1418-1424. 

Shannon, R. (1976). "Two-tone unmasking and suppression in a forward- 
masking situation," J. Itcoust. Soc. Am. 59, 1460-1471. 

Shepard, R. (1964). "Cin:ularity in judgments of relative pitch," J. Acoust. 
Soc. Am. 36, 2346-2353. 

Small and Daniloff (1967) 
Smoo•enburg, G. (1970). "Pitca perception of two-frequency stimuli," J. 

Acoust. Soc. Am. 48, 924-942. 
Terhardt, E. (1972). "Zm Tonhlihenwahrnehmung yon Kl:,ingen," Acuqtica 

26, 173-199. 
Terhardt, E. (1974). "Pitch, consonance, and harmony," J. Acoust. Soc. Am. 

55, 1061-1069. 
Terhardt, E., Stoll, G., and Seewarm, M. (1982a). "Algorithm for extraction 

of pitch and pitch salie•ce ffcm complex tonal signals," J. Acoust. Soc. 
Am. 71, 679-688. 

Terhardt, E., Stoil, G., and Seewann, M. (1982b). "Pitch of complex signals 
according to virtual-pit:h theory: Tests, examples, and predictions," 1. 
Acoust. Soc. Am. 71, 671-671L 

yon Bdk•:sy, G. (1928). "Zur thcorie des h/irens; die schwingungsform der 
basilar membran." Phys. Z. 2õ, 793-810. 

yon Bdk•sy, G. 0963). "Heating theories and complex sound," J. Acoust. 
Soc. Am. 35, 588-601. 

Wightman, F. (1973a). 'The pattern-transformation model of pitch," J. 
Aco•st. Soc. Am. 54, 407-416. 

Wightman, E (1973b). "Pitch and stimulus fine structure," 1. Acoust. Soc. 
Am. 54, 397-406. 

Yost, W., Hill, R., and Perez-Falcon. T. (1978). "Pitch and pitch discrimi- 
nation of broadband signals w•th rippled power spectra," J. Acoust. Soc. 
Am. 63, 1166-1173. 

Yost, W., and Hill, R. (1979). "Models of the pitch and pitch strength of 
ripple nmse," I. Acoust. Soc. ,tim. 66, 400-410. 

879 J. Acoust. Soc. Am., Vol. 98, No. 2, Pt. 1, August 1995 Cohsn et al.: Spatial pitch network 879 

Downloaded 10 Jan 2011 to 137.132.123.69. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp


